Животный индикан. Детоксикационные системы печени

View All Members

Provided that you have the appropriate permissions, you will be able to see the Members entry on the or in the . Clicking one of these links will bring you to the View all Members page, the default page for the Members List section. There is also a page in this section, where you can search for members registered on the forum.

On the View All Members page, you will see the list of all the members registered on the forum. Pages are used so that there are not too many members listed on one single page. When there is more than one page, the additional pages can be selected from here. On the right side of the "Members List" title bar, every letter of the English alphabet is displayed. These letters are used to jump to the usernames of registered members that begin with that letter, so that you do not have to scroll through several pages to find them. This does not filter out all of the usernames beginning with different letters, but rather serves as an anchor, so you will be directed to usernames that start with the selected letter.

All usernames in the memberlist can be ordered by: Status (Online/Offline), Username, Email, Website, ICQ, AIM, YIM, MSN, Position, Date Registered, and Posts. These column headings are links that can be used to sort the list in ascending or descending order, or to reverse the sort order of the column under the heading that is currently used to sort the list.

Search for Members

This section allows you to do either a simple search for members, or to choose to filter your results by using additional parameters. You can search for members based on their username, email address, messenger nickname, website, or position.

The search results will show matches for the terms that you enter in the search field. If any of the additional search parameters are selected, then the results will also be filtered accordingly. The search does not look only for full-word exact matches, but also for any parts of text that match the search terms. For this reason, if the search term represents only part of the word that you are looking for, then the results may show many more matches than expected.

Some of the additional search parameters relate to information that users can either choose not to include in their profile (messenger nickname, website) or they can choose not to reveal it to the public (email), so using these parameters might not always bring up the results that you are looking for. The results of the search will be more accurate the more letters/words that are used in the search.

Обезвреживание (детоксикация, биотрансформация) естественных метаболитов и чужеродных соединений (ксенобиотиков) непрерывно протекает в любом организме.

Токсичные и просто чужеродные вещества попадают в организм тремя путями: желудочно-кишечный тракт , легкие и кожа . Далее эти вещества либо могут подвергнуться каким-либо превращениям (биотрансформации) в легких и ЖКТ, либо перейти в кровь. С током крови любые соединения попадают в печень и другие органы. Если это водорастворимое вещество, то оно в состоянии профильтроваться в почках, если летучее – оказаться в выдыхаемом воздухе и покинуть организм, если жирорастворимое – оно либо фиксируется в тканях (кожа, нервная система, жировая ткань и т.п.), либо подвергается биотрансформации в печени. После превращений в печени модифицированное соединение направляется либо в желчь и далее в фекалии, либо в кровь и мочу.

Кожа также является органом выделения, хотя обычно эта функция проявляется слабо. Однако при нарушении выделительной функции почек и/или заболеваниях печени и желчевыделительной системы нагрузка на кожу возрастает, что может привести к ее косметическим нарушениям.

Места биотрансформации, задержки и выведения ксенобиотиков

Ксенобиотики – вещества, которые не используются как источник энергии, не встраиваются в структуры организма и не используются для пластических целей.

Например, биотрансформации в печени подвергаются следующие вещества:

  • стероидные и тиреоидные гормоны, инсулин , адреналин ,
  • продукты распада гемопротеинов (билирубин),
  • продукты жизнедеятельности микрофлоры, всасывающиеся из толстого кишечника при гниении белков – кадаверин (производное лизина), путресцин (производное аргинина), крезол и фенол (производное фенилаланина и тирозина) и других токсинов,
  • ксенобиотики (токсины, лекарственные вещества и их метаболиты).

В целом все реакции биотрансформации делят на две группы или фазы:

  • реакции 1 фазы – реакции превращения исходного вещества в более полярный метаболит путем введения или раскрытия функциональной группы (‑ОН, ‑NH 2 , ‑SH). Эти метаболиты часто неактивны, хотя в некоторых случаях активность не исчезает, а только изменяется. Если эти метаболиты достаточно полярны, они могут легко экскретироваться,
  • реакции 2 фазы – отличительным признаком этой фазы являются реакции конъюгации с глюкуроновой, серной, уксусной кислотами, с глутатионом или аминокислотами.
Две фазы биотрансформации ксенобиотиков

Оба типа реакций совершенно самостоятельны и могут идти независимо друг от друга и в любом порядке. Для некоторых веществ после реакций 1-й и 2-й фазы вновь могут наступить реакции фазы 1.

Примером сочетанного превращения веществ может служить обезвреживание индола , продукта

Индикан. Индол по воротной вене попадает в печень, где подвергается обезвреживанию путем связывания с серной кислотой, в результате чего образуется животный индикан. Реакцию катализирует ФАФС - 3-фосфоаденозин-5-фосфосульфат. В норме в крови индикан составляет 1,19-3,18 мкМ/л, в моче обычными методами не определяется, т.к. ниже 0,47 мМ в сутки.

Определение уровня индикана в сыворотке является важным показателем недостаточности функции почек. При хронических нефритах увеличение содержания индикана в крови точнее отражает степень почечной недостаточности, чем сведения о мочевине и остаточном азоте. Содержание индикана повышается при запорах, кишечной непроходимости, усиленном распаде белков (опухоли, эмпиема, бронхоэктатическая болезнь, абсцессы). В моче индикан выявляется при кишечной непроходимости, перитоните, гангрене, туберкулезе, раке желудка, брюшном тифе.

Билет№21

      Основные типы превращений аминокислот в тканях(дезаминирование, трансаминирование. декарбоксилирование)

1)Дезаминирование. 4 вида. Во всех случаях аминая группа АК осв.в виде аммиака:

Продукты: жир.к-ты, оксик-ты, непред.АК, кеток-ты.

Первая стадия окислительного дезаминирования(в тканях только это!) предполагает ок-е АК путем дегидрирования. В тканях при физиологич.знач.рН(7,3-7,4) активна только 1 L-оксидаза – глутамат-ДГ;ее небелковым компонентом является НАД или НАДФ. Оксидазы остальных АК активны только про рН=10, а при этом они неактивны.(в кач.небелк.компонента имеют ФМН) – прямому ок-ному дезаминированию подверг.только глутамат.

    Непрямое дезаминирование.

    1. Трансаминирование

    Декарбоксилирование

    1. α-Декарбоксилирование, характерное для тканей животных, при котором от аминокислот отщепляется карбоксильная группа, стоящая по соседству с α-углеродным атомом. Продуктами реакции являются СО 2 и биогенные амины:

      ω-Декарбоксилирование, свойственное микроорганизмам. Например, из аспарагиновой кислоты этим путем образуется α-аланин:

      Декарбоксилирование, связанное с реакцией трансаминирования:

      Декарбоксилирование, связанное с реакцией конденсации двух молекул:

Реакции декарбоксилирования в отличие от других процессов промежуточного обмена аминокислот являются необратимыми. Они катализируются специфическими ферментами – декарбоксилазами аминокислот

    Стерины, стериды, их представители. Биологическая роль холестерина как предшественника других стеринов.

СТЕРИНЫ (стеролы), алициклич. прир. спирты, относящиеся к стероидам; составная часть неомыляемой фракции животных и растит.липидов.

Стерины присутствуют практически во всех тканях животных и растений и являются наиб. распространенными представителямистероидов в природе. В зависимости от источника подразделяются на животные (зоостерины), растительные (фитостерины), стерины грибов (микостерины) и микроорганизмов.

Холестерин (cholesterol) - Тетрациклический ненасыщенный спирт из класса стероидов, важнейший представитель стеринов, являющийся в организме предшественником желчных кислот, кортикостероидов, половых гормонов, кальциферола и т.д. Нарушение обмена холестерина лежит в основе ряда генетически обусловленных заболеваний.

Длястеринов характерно наличие гидроксильной группы в положении 3, а также боковой цепи в положении 17. У важнейшего представителя стеринов – холестерина – все кольца находятся в транс-положении; кроме того, он имеет двойную связь между 5-м и 6-м углероднымиатомами. Следовательно, холестерин является ненасыщенным спиртом:

Каждая клетка в организме млекопитающих содержит холестерин. Находясь в составе мембран клеток, неэтерифицированныйхолестерин вместе с фосфолипидами и белками обеспечивает избирательную проницаемость клеточной мембраны и оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней ферментов. В цитоплазме холестерин находится преимущественно в виде эфиров с жирными кислотами, образующих мелкие капли – так называемые вакуоли. В плазме крови как неэтерифицированный, так и этерифицированный холестерин транспортируется в составе липопротеинов.

Холестерин – источник образования в организме млекопитающих желчных кислот, а также стероидных гормонов (половых и кортикоидных). Холестерин, а точнее продукт его окисления – 7-дегидрохолестерин, под действием УФ-лучей в коже превращается в витамин D 3 .

Холестерин находится в животных, но не в растительных жирах. В растениях и дрожжах содержатся близкие по структуре к холестерину соединения, в том числе эргостерин.

Эргостерин – предшественник витамина D. После воздействия на эрго-стерин УФ-лучами он приобретает свойство оказывать противорахитное действие (при раскрытии кольца В).

Восстановление двойной связи в молекуле холестерина приводит к образованию копростерина (копростанола). Копростерин находится в составе фекалий и образуется в результате восстановления бактериями кишечной микрофлоры двойной связи в холестерине междуатомами С 5 и С 6

Указанные стерины в отличие от холестерина очень плохо всасываются в кишечнике и потому обнаруживаются в тканях человека в следовых количествах.Стериды - сложные эфиры высших жирных кислот со стеринами.

    Витамин С. Химическая природа, распространение. участие в обменных процессах.

Водорастворимый. Антискорбутный/аскорбиновая кислота. Сут.потр. 75-120мг. Салат, капуста, укроп, черная смородина, шиповник, картофель.

Биологич.роль: окисление НАДН. Участиев ОВР, р.гидроксилирования пролина, лизина, при синтезе коллагена, гормнов коры надпочечников, трп; синтез катехоламинов(адренал). Антиоксидант: блокир.своб.радикалы. В обмене железа, включ.его в трансферрин. Образование желч.кислот.

Авитаминоз:поражение сосудистой стенки, опорных тканей; уменьш.массы тела, общая слабость, одышка, цинга. Скорбут. Гнойные воспаления.

      Парные соединения мочи.

микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частноститирозина и триптофана, с образованием ядовитых продуктов обмена – соответственно крезола и фенола, скатола и индола.

После всасывания эти продукты через воротную вену попадают в печень, где подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсернаякислота или ска-токсилсерная кислота). Последние выделяются с мочой.

Индол (как и скатол) предварительно подвергается окислению в индоксил (соответственно скатоксил), который взаимодействует непосредственно в ферментативной реакции с ФАФС или с УДФГК. Так, индол связывается в виде эфиросерной кислоты. Калиевая соль этой кислоты получила название животного индикана, который выводится с мочой. По количеству индикана в моче человека можно судить не только о скорости процесса гниения белков в кишечнике, но и о функциональном состоянии печени. О функции печени и ее роли в обезвреживании токсичных продуктов часто также судят по скорости образования и выделения гиппуровой кислоты с мочой после приема бензойной кислоты

Билет№22

    Непрямое дезаминирование аминокислот, биологическое значение. Роль глутаматдегидрогеназы. Виды аминотрансфераз, их специфичность.

Непрямое дезаминирование.

1)Трансаминирование

АК + альфа-КГ аминотрансфераза, вит.В6альфа-кеток-та + глутамат

Механизм: 1. АК+ФП  альфа-кетокта + ФП-амин

    ФП-амин + альфа-КГ  ФП +глутамат

Аминотрансферазы облад.субстратной специфичностью:

Ала+-КГ АЛТ, В6  ПВК / глутамат

Аспартат +-КГ АСТ, В6  оксалоацетат +глутамат

2)окислительное дезаминирование глутамата

Роль: - синтез заменимых АК

Т-первая реакция непрямого дезаминирования с образованием кетокислот, к-рые используются на гюконеогенез, или окисляются в ЦТК

Р.обратимы;их можно рассм.как р.анаболизма, так и катаболизма.

В тканях при физиологич.знач.рН(7,3-7,4) активна только 1 L-оксидаза – глутамат-ДГ;ее небелковым компонентом является НАД или НАДФ. Оксидазы остальных АК активны только про рН=10, а при этом они неактивны.(в кач.небелк.компонента имеют ФМН) – прямому ок-ному дезаминированию подверг.только глутамат.

    Переваривание и всасывание простых и сложных липидов в ЖКТ. Возрастные особенности.

    Витамин В1. Химическая природа, распространение, участие в обменных процессах.

Водорастворимый. Антиневритный/тиамин. Сут.потребность 1,2-2,2мг. Растительная пища, дрожжи, пшенич.хлеб, хлеб.злаки, соя, фасоль, горох, печень, почки, могз. Активная форма – тиаминпирофосфат.

В форме ТПФ входит в состав 4 ферментов, участвующих в промежут.обмене веществ. ТПФ входит в состав 2 сложных ферментных систем1)пируват, 2)альфа-кетоглутарат-дегидрогеназных комплексов, катализирующих окислительное декарбоксилирование ПВК и альфа-КГ кислот.

Авитаминоз: бери-бери(симптом Вернике - энцефалопатия)/синдром Вейса(поражение ССС); нарушения деятельности НС, ССС, ЖКТ. Симптомы: наруш.мотор.и секретор.ф.ЖКТ(потеря аппетита, атония кишечника); потеря памяти, галлюцинации, одышка, сердцебиение, боли в обл.сердца, далее дегенеративые изменения нерв.окончаний и проводящих пучков, контрактуры, параличи;сердец.недостаточность.

    Минеральные вещества мочи.

Ионы натрия и хлора. В норме около 90% принятых с пищей хлоридов выделяется с мочой (8–15 г NaCl в сутки). При ряде патологических состояний (хронический нефрит, диарея, острый суставной ревматизм и др.) выведение хлоридов с мочой может быть снижено. Максимальная концентрация ионов Na + и Сl – (в моче по 340 ммоль/л) может наблюдаться после введения в организм больших количеств гипертонического раствора.

Ионы калия, кальция и магния. Многие исследователи считают, что практически все количество ионов калия, которое имеется в клубочковом фильтрате, всасывается обратно из первичной мочи в проксимальном сегменте нефрона. В дистальном сегменте происходит секреция ионов калия, которая в основном связана с обменом между ионами калия и водорода. Следовательно, обеднениеорганизма калием сопровождается выделением кислой мочи.

Ионы Са 2+ и Mg 2+ выводятся через почки в небольшом количестве (см. табл. 18.1). Принято считать, что с мочой выделяется лишь около 30% всего количества ионов Са 2+ и Mg 2+ , подлежащего удалению из организма. Основная масса щелочноземельных металловвыводится с калом.

Бикарбонаты, фосфаты и сульфаты. Количество бикарбонатов в моче в значительной мере коррелирует с величиной рН мочи. При рН 5,6 с мочой выделяется 0,5 ммоль/л, при рН 6,6 – 6 ммоль/л, при рН 7,8 – 9,3 ммоль/л бикарбонатов. Уровень бикарбонатовповышается при алкалозе и понижается при ацидозе. Обычно с мочой выводится менее 50% всего количества выделяемых организмомфосфатов. При ацидозе выведение фосфатов с мочой возрастает. Повышается содержание фосфатов в моче при гиперфункции паращитовидных желез. Введение в организм витамина D снижает выделение фосфатов с мочой.

Аммиак. Как отмечалось, существует специальный механизм образования аммиака из глутамина при участии фермента глутаминазы, которая в большом количестве содержится в почках. Аммиак выводится с мочой в виде аммонийных солей. Содержание последних вмоче человека в определенной степени отражает кислотно-основное равновесие. При ацидозе их количество в моче увеличивается, а при алкалозе снижается. Содержание аммонийных солей в моче может быть снижено при нарушении в почках процессов образованияаммиака из глутамина.

Билет№23

      Образование и обезвреживание аммиака. Биосинтез мочевины, последовательность реакций. Роль печени в мочевинообразовании. Возрастные особенности.

Источники аммиака:

1)дезаминирование АК(в тканях и кишечнике)

2)дезаминирование аминов

3)дезаминирование азотистых оснований

Аммиак в крови – 12-65мкмоль/л(10-120мкг%), в моче – 35,7 – 71,4ммоль/сут(0,5-1,0г)

Аммиак исключительно токсичен.

Обезвреживание:

1)образование амидов(локально)

Гутамат + NH3,NH4+,АТФ, магний++, глутамин-синтетазаглутамин +АДФ +Фн

Глутаминпочки(–аммиак, глутаминаза) Глутамат -аммиак2аммоний+аммониогенез

альфа-КГ

печень, синтез мочевины

синтез пуринов, пиримидинов.

2)восстановительное аминирование

А. альфа-КГ (глутаматДГ, аммоний, 2Н, НАДФ)глутамат, Н2О, НАДФН

Б. глутамат + ПВК (трансаминирование)альфа-КГ +ала

3)образование аммонийных солей

4)синтез мочевины.

      Судьба всосавшихся простых и сложных липидов. Жировые депо. Липотропные вещества и их роль.

      Витамин В2. Химическая природа, распространение, участие в обменных процессах.

Рибофлавин/лактофлавин(из молока)/гепатофлавин(из печени)/овофлавин(из белка яиц)/вердофлавин(из растений)

Потребность – 1,7мг – взрослые. Увеличивается в пожилом возр.и при тяжелой физич.нагрузке. Дрожжи, хлеб, семена злаков, яйца, молоко, мясо, свежие овощи.

Актив.форма – флавинадениндинуклеотид ФАД, ФМН(моно-).

Вход.в состав флавин.коферментов; ФМН и ФАД(просетич.группа ферментов-флавопротеидов), р.дегидрирования, биологическое окисление.

Авитаминоз: остановка роста, выпадение волос(алопеция); воспалит.процессы полости рта, слиз.об.языка(глоссит), губ, углов рта, эпителия кожи. Кератиты глаз, катаракта; общая мышечная слабость и слабость сердечной мышцы.

      Реакции на патологические составные части мочи(белок. глюкоза, кровь, ацетоновые тела). Методы экспресс-диагностики.

На белок:

    с сульфосалицил.к-той(выпад.хлопьеобраз.осадок)

  • с азотной кислотой (кольцо помутнения)

    кол-венное определение нефелометрическим методом – степень помутнения р-ра(при взаимод.с ТХУ) пропорциональна концентрации белка. показания на ФЭКе.

    р. Ниляндера (черный осадок висмута)

    р. Фелинга (красный осадок закиси меди)

    метод Альтгаузена – полуколичественный – нагревание глю с 10%NaOH- деструкция глю с образованием окраш.продуктов(окраска от желтой до коричневой)

На кровь:

    Бензидиновая р. (сине-зеленое окраш.)

На кетоновые тела:

    р. Легаля (оранжево-красное окрашивание, переходящее в вишневое)

Экспресс-методы:

    проба на присутствие глю в моче

Метод основан на р.Фелинга. На предмет.стекло щепотку смеси сернокислой меди и углеродистого натрия. На порошок 2 кап исследуемой мочи и слегка подогрев на спиртовке. Изменеие окраски: от голубого(отсутствие), до кирпично-красного (4%и более)

    экспресс-анализ на присутствие ацетоновых тел

Основан на р.с нитропруссидом натрия. Поместить на полоску филтров.бумаги таблетку или щепотку реактив.порошка(сернокислый аммоний, углекислый натрий и нитропруссид натрия), +2 кап мочи. Через 2 мин окраску сравнить со шкалой. Цвет не меняется – отсутствие кет.тел. Наличие – цвет от розового до фиолетового.

Индикан (калиевая соль 3-гидроксииндолилсирчанои кислоты) — один из конечных продуктов азотистого обмена, который выделяется с мочой.

Образование

Он образуется в почках из 3-гидроксииндолилсирчанои кислоты, которая является продуктом обезвреживания индола. Последний поступает в кровь из толстого кишечника, где образуется из триптофана в результате гниения белков. Индол является токсичным веществом. В клетках печени индол сначала окисляется до 3-гидроксииндолу — индоксилу, а дальше сочетается с серной кислотой, образуя индоксилсирчану кислоту. Калиевая или натриевая соль этой кислоты называется индикан.

Физиология человека

У здорового человека содержание индикана в крови находится в пределах 1,0-4,7 мкмоль / л. Количество индикана в моче за сутки 5-20 мг. Повышение содержания индикана в крови выше 0,140-0,160 мг% называется индиканемии, а повышение содержания в моче — индиканурии. При избытке индикана моча приобретает коричневый цвет. По количеству этого вещества в моче человека делают вывод об интенсивности процессов гниения белков в толстом кишечнике, а также о функциональном состоянии печени.

Повышение уровня индикана в крови и моче наблюдается при усилении гниения в кишечнике, длительных запорах, туберкулезе кишечника, диспепсии, тифах, при гнойных очагах в организме (абсцессах, гнойных бронхитах), а также при болезнях печени, хроническом поражении почек, язвенной болезни желудка, иногда при беременности.

Индикан сыворотки крови

Индикан образуется в печени при обезвреживании индола - ядовитого вещества, появляющегося в кишечнике при гниении белков. Вот почему его содержание в сыворотке крови заметно возрастает при наличии гнилостных процессов в кишечнике. Это снижает его диагностическую ценность как признака почечной недостаточности.

У здоровых людей концентрация индикана в крови равна 0,87-3,13 мкмоль/л. С учетом возможных кишечных патологий врачи условно принимают, что их следствием может быть повышение концентрации индикана до 4,7 мкмоль/л. Если анализы дают более высокие показатели, ихсчитают признаком патологии почек.

Билирубин СЫВОРОТКИ КРОВИ

Билирубин образуется во всех клетках ретикулоэндотелиальной системы при распаде гемоглобина из погибших эритроцитов. Здесь вырабатывается так называемый непрямой, или свободный билирубин, циркулирующий в крови в виде комплекса с альбуминами. Он нерастворим в воде, токсичен и не проходит через почечный Фильтр. Этот пигмент дает цветную реакцию со специальным реактивом только после того, как будут осаждены связанные с ним альбумины, и поэтому называется непрямым. Кровь доставляет непрямой билирубин к клеткам печени. Здесь комплекс распадается, альбумины остаются в крови, а непрямой билирубин проникает в клетки печени, где преобразуется в прямой билирубин (сразу дающий цветную реакцию) и переходит с желчью в кишечник для выведения из организма. Из кишечника часть прямого билирубина всасывается в кровоток. В итоге в норме общее содержание билирубина в крови равно 8,5-20,5 мкмоль/л, причем 70% составляет непрямой и 30% - прямой билирубин.

Гипербилирубинемия - повышение содержания билирубина в крови - сопровождается желтушной окраской слизистых оболочек и кожных покровов. Различают легкую форму желтухи - при концентрации билирубина в крови до 86 мкмоль/л, среднетяжелую (87-159 мкмоль/л) и тяжелую (свыше 160 мкмоль/л). Гипербилирубинемия наблюдается при:

# увеличении интенсивности гемолиза (разложения гемоглобина);

# поражениях паренхимы (ткани) печени;

# застойных явлениях в печени и желчных путях.

Интенсивность гемолиза возрастает при гемолитических анемиях, гемолитической болезни новорожденных, В12-деФицитной анемии, талассемии, обширных гематомах.

Паренхиматозные желтухи развиваются при инфекционном или вирусном гепатитах, циррозе и других заболеваниях печени.

Застойные явления могут быть вызваны внепеченочной обдурацией поджелудочной железы, желчнокаменной болезнью, новообразованиями, гельминтозами и медикаментозной терапией

Из книги Аптека здоровья по Болотову автора Глеб Погожев

Прием молочной сыворотки При нефритах показано употребление молочной сыворотки (3–5 стаканов в

Из книги Всё, что нужно знать о своих анализах. Самостоятельная диагностика и контроль за состоянием здоровья автора Ирина Станиславовна Пигулевская

Железосвязываюшая способность сыворотки крови (ЖСС) Это показатель, характеризующий способность сыворотки крови к связыванию железа.Железо в организме человека находится в комплексе с белком – трансферрином. ЖСС показывает концентрацию трансферрина в сыворотке

Из книги О чем говорят анализы. Секреты медицинских показателей – для пациентов автора Евгений Александрович Гринь

5.3. Билирубин сыворотки крови Что же известно про билирубин? На самом деле многое!Билирубин является продуктом распада гемоглобина и образуется в костном мозге, печени и селезенке, т. е. там, где присутствуют клетки ретикулоэндотелиальной системы.В норме же его

Из книги Маски для волос и кожи головы автора Елена Владимировна Доброва

5.4.5. Индикан крови В норме содержание индикана в крови колеблется от 0,19 до 3,1 мкмоль/л и при развитии почечной недостаточности происходит его увеличение.Однако у показателя индикана довольно низкая диагностическая ценность. А все дело в том, что уровень его содержания

Из книги Учимся понимать свои анализы автора Елена В. Погосян

5.5. Ферменты сыворотки крови Ферменты представляют собой специфические вещества, имеющие белковую природу, которые вырабатываются клетками и тканями живых организмов.В норме в сыворотке крови и плазме ферменты принято разделять на три группы: Секреторные, к которым

Из книги Болезни щитовидной железы. Лечение без ошибок автора Ирина Витальевна Милюкова

МАСКА ИЗ МОЛОЧНОЙ СЫВОРОТКИ Ингредиенты1 стакан молочной сыворотки.Способ приготовления и примененияМолочную сыворотку нанести на волосы и втереть в кожу головы. Оставить на несколько минут, затем смыть теплой кипяченой водой. Такая маска обладает оздоравливающим и

Из книги Вегетарианская кухня – правильный выбор автора Елена Грицак

Железосвязывающая способность сыворотки крови Железосвязываюшая способность сыворотки крови (ЖСС) - показатель, характеризующий способность сыворотки крови к связыванию железа. Железо в организме человека находится в комплексе с белком - трансферрином. ЖСС показывает

Из книги Проблемы лечебного голодания. Клинико-экспериментальные исследования автора Петр Кузьмич Анохин

Иммуноферментный анализ сыворотки крови (ИФА) Различают антитела трех классов: иммуноглобулины М, А, С JдМ, JдА, JС). Они накапливаются в сыворотке крови и секретах организма через разные промежутки времени от начала инфицирования.При первичном инфицировании первыми

Из книги автора

Мочевина сыворотки крови Мочевина - главный компонент фракции остаточного азота (см. предыдущий раздел) -составляет в ней примерно 50%. В норме содержание мочевины в сыворотке крови колеблется от 2,5 до 8,3 ммоль/л.Изменение концентрации мочевины - важный диагностический

Из книги автора

Активность ферментов сыворотки крови Ферменты (или энзимы) - это белки специфической природы, которые синтезируются в клетках, катализируют биохимические реакции (т. е. увеличивают их скорость), происходящие в нашем организме, но сами при этом остаются неизменными. Можно

Из книги автора

Тироксин (Т4), общий Т4 сыворотки Норма: 50–113 нг/мл; 5–12 мкг % (4–11 мкг %); 65–156 нмоль/л (51–142 нмоль/л) - в зависимости от метода.Тироксин Т4 - это одна из форм гормона щитовидной железы; он образуется в щитовидной железе, но не оказывает особого влияния на обмен веществ. Более

Из книги автора

Свободный тироксин сыворотки Норма: 0,8–2,4 нг % (0,01–0,03 нмоль/л).Активность гормона щитовидной железы Т4 зависит от концентрации свободного Т4.Повышение содержания свободного тироксина отмечается при гипертиреозе (повышенной функции щитовидной железы), иногда при активном